Training Mode | Regular | Fastrack | Crash |
---|---|---|---|
Classroom | Online | 12 Months (M,W,F or T,T,S Class) (3 Class in a week) |
6 Months (Monday to Friday Class) (5 Class in a week) |
4 Months (Monday to Friday Class) (5 Class in a week 1:30 hour duration) |
Introduction :
1. Getting Started with Machine Learning
2. An Introduction to Machine Learning
3. What is Machine Learning ?
4. Introduction to Data in Machine Learning
5. Demystifying Machine Learning
6. ML – Applications
7. Best Python libraries for Machine Learning
8. Artificial Intelligence | An Introduction
9. Machine Learning and Artificial Intelligence
10. Difference between Machine learning and Artificial Intelligence
11. Agents in Artificial Intelligence
12. 10 Basic Machine Learning Interview Questions
Data and It’s Processing:
1. Introduction to Data in Machine Learning
2. Understanding Data Processing
3. Python | Create Test DataSets using Sklearn
4. Python | Generate test datasets for Machine learning
5. Python | Data Preprocessing in Python
6. Data Cleansing
7. Feature Scaling – Part 1
8. Feature Scaling – Part 2
9. Python | Label Encoding of datasets
10. Python | One Hot Encoding of datasets
11. Handling Imbalanced Data with SMOTE and Near Miss Algorithm in Python
Supervised learning :
1. Getting started with Classification
2. Basic Concept of Classification
3. Types of Regression Techniques
4. Classification vs Regression
5. ML | Types of Learning – Supervised Learning
6. Multiclass classification using scikit-learn
7. Gradient Descent :
• Gradient Descent algorithm and its variants
• Stochastic Gradient Descent (SGD)
• Mini-Batch Gradient Descent with Python
• Optimization techniques for Gradient Descent
• Introduction to Momentum-based Gradient Optimizer
8. Linear Regression :
• Introduction to Linear Regression
• Gradient Descent in Linear Regression
• Mathematical explanation for Linear Regression working
• Normal Equation in Linear Regression
• Linear Regression (Python Implementation)
• Simple Linear-Regression using R
• Univariate Linear Regression in Python
• Multiple Linear Regression using Python
• Multiple Linear Regression using R
• Locally weighted Linear Regression
• Python | Linear Regression using sklearn
• Linear Regression Using Tensorflow
• A Practical approach to Simple Linear Regression using R
• Linear Regression using PyTorch
• Pyspark | Linear regression using Apache MLlib
• ML | Boston Housing Kaggle Challenge with Linear Regression
9. Python | Implementation of Polynomial Regression
10. Softmax Regression using TensorFlow
11. Logistic Regression :
• Understanding Logistic Regression
• Why Logistic Regression in Classification ?
• Logistic Regression using Python
• Cost function in Logistic Regression
• Logistic Regression using Tensorflow
12. Naive Bayes Classifiers
13. Support Vector:
• Support Vector Machines(SVMs) in Python
• SVM Hyperparameter Tuning using GridSearchCV
• Support Vector Machines(SVMs) in R
• Using SVM to perform classification on a non-linear dataset
14. Decision Tree:
• Decision Tree
• Decision Tree Regression using sklearn
• Decision Tree Introduction with example
• Decision tree implementation using Python
• Decision Tree in Software Engineering
15. Random Forest:
• Random Forest Regression in Python
• Ensemble Classifier
• Voting Classifier using Sklearn
• Bagging classifier